DataDOI
    • English
    • Eesti
  • English 
    • English
    • Eesti
  • Login
View Item 
  •   DataDOI
  • UT Realia
  • Arvutiteaduse instituut
  • Arvutiteaduse andmed
  • View Item
  •   DataDOI
  • UT Realia
  • Arvutiteaduse instituut
  • Arvutiteaduse andmed
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

HPC Cloud traces for better cloud service reliability

Dehury, Chinmaya Kumar; Chhetri, Tek Raj; Lind, Artjom; Srirama, Satish Narayana; Fensel, Anna
  • BibTex
  • EndNote (RIS)
Loading
NameSizeDescription
README.txt1.446KbInformation about this data, project, and contributors.
Anonymised_data_V1.zip108.3MbContains the actual data in CSV and the code to anonymise the sesitive data.
README_DATA.txt2.665KbReadme for the actual data present in "Anonymize_data_V2" zip file.
Source_code_V1.zip10.28KbContains the source code used in the paper "A Combined Metrics Approach to Cloud Service Reliability using Artificial Intelligence".
README_SOURCE_CODE.txt2.200KbReadme for the source code present in "Source_code_V1" zip file.
Thumbnail
Date
2021
URI
https://datadoi.ee/handle/33/425
https://doi.org/10.23673/re-300
Metadata
Show full item record
Abstract
This data is in support of the research on "A combined system metrics approach to cloud service reliability using artificial intelligence" (doi: 10.20944/preprints202111.0548.v1)
Keyword
Failure Prediction; Fault-tolerance; Cloud computing; Artificial Intelligence; Reliability
Item type
info:eu-repo/semantics/dataset
Collections
  • Arvutiteaduse andmed

University of Tartu Library
Open Science
Contact Us
DSpace software
Mirage 2 Theme
 

 

Browse

Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

University of Tartu Library
Open Science
Contact Us
DSpace software
Mirage 2 Theme