dc.contributor.author | Tahk, Maris-Johanna | |
dc.contributor.author | Torp, Jane | |
dc.contributor.author | Ali, Mohammed A.S. | |
dc.contributor.author | Fishman, Dmytro | |
dc.contributor.author | Parts, Leopold | |
dc.contributor.author | Grätz, Lukas | |
dc.contributor.author | Müller, Christoph | |
dc.contributor.author | Keller, Max | |
dc.contributor.author | Veiksina, Santa | |
dc.contributor.author | Laasfeld, Tõnis | |
dc.contributor.author | Rinken, Ago | |
dc.date.accessioned | 2022-01-16T19:50:21Z | |
dc.date.available | 2022-01-16T19:50:21Z | |
dc.date.issued | 2022-01-13 | |
dc.identifier.uri | https://datadoi.ee/handle/33/431 | |
dc.identifier.uri | https://doi.org/10.23673/re-305 | |
dc.description.abstract | The "UT-GPCR004 CHO-K1 cell line bright-field and fluorescence microscopy and corresponding segmentation ground truth" dataset contains the raw microscopy images, corresponding bright-field Z-stack based contrast-enhanced images and the corresponding manual ground truth for fluorescence and bright-field images as well as ground truth generated from the fluorescence images using either random forest-based Ilastik model or U-Net3 based deep learning model. The dataset also contains the class balanced version of the ground truth. | en |
dc.format | TIFF | en |
dc.format | HDF5 | en |
dc.format | png | en |
dc.language.iso | en | en |
dc.publisher | University of Tartu, Institute of Chemistry, Chair of Bioorganic chemistry | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.rights | Attribution 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Deep convolutional neural networks | en |
dc.subject | bright-field microscopy | en |
dc.subject | fluorescence microscopy | en |
dc.subject | Random forest | en |
dc.subject | ground truth | en |
dc.title | UT-GPCR004 CHO-K1 cell line bright-field and fluorescence microscopy and corresponding segmentation ground truth | en |
dc.type | info:eu-repo/semantics/dataset | en |
dc.relation.iscitedby | https://doi.org/10.1101/2021.12.22.473643 | en |