dc.contributor.author | Tahk, Maris-Johanna | |
dc.contributor.author | Torp, Jane | |
dc.contributor.author | Ali, Mohammed A.S. | |
dc.contributor.author | Fishman, Dmytro | |
dc.contributor.author | Parts, Leopold | |
dc.contributor.author | Grätz, Lukas | |
dc.contributor.author | Müller, Christoph | |
dc.contributor.author | Keller, Max | |
dc.contributor.author | Veiksina, Santa | |
dc.contributor.author | Laasfeld, Tõnis | |
dc.contributor.author | Rinken, Ago | |
dc.date.accessioned | 2022-01-16T13:04:24Z | |
dc.date.available | 2022-01-16T13:04:24Z | |
dc.date.issued | 2022-01-13 | |
dc.identifier.uri | https://datadoi.ee/handle/33/430 | |
dc.identifier.uri | https://doi.org/10.23673/re-304 | |
dc.description.abstract | The "UT-GPCR002 Machine learning models for CHO-K1 cell segmentation from fluorescence and bright-field microscopy images" dataset contains the machine learning model files for CHO-K1 cell segmentation from fluorescence and bright-field microscopy images. Random forest-based models are implemented as Ilastik projects while deep-learning models are implemented in Keras. | en |
dc.format | ilp | en |
dc.format | hdf5 | en |
dc.language.iso | en | en |
dc.publisher | University of Tartu, Institute of Chemistry, Chair of Bioorganic chemistry | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.rights | Attribution 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | U-Net | en |
dc.subject | Random forest | en |
dc.subject | Cell segmentation | en |
dc.subject | Ilastik | en |
dc.title | UT-GPCR002 Machine learning models for CHO-K1 cell segmentation from fluorescence and bright-field microscopy images | en |
dc.type | Model | en |
dc.relation.iscitedby | https://doi.org/10.1101/2021.12.22.473643 | en |