Show simple item record

dc.contributor.authorTahk, Maris-Johanna
dc.contributor.authorTorp, Jane
dc.contributor.authorAli, Mohammed A.S.
dc.contributor.authorFishman, Dmytro
dc.contributor.authorParts, Leopold
dc.contributor.authorGrätz, Lukas
dc.contributor.authorMüller, Christoph
dc.contributor.authorKeller, Max
dc.contributor.authorVeiksina, Santa
dc.contributor.authorLaasfeld, Tõnis
dc.contributor.authorRinken, Ago
dc.date.accessioned2022-01-16T13:04:24Z
dc.date.available2022-01-16T13:04:24Z
dc.date.issued2022-01-13
dc.identifier.urihttps://datadoi.ee/handle/33/430
dc.identifier.urihttps://doi.org/10.23673/re-304
dc.description.abstractThe "UT-GPCR002 Machine learning models for CHO-K1 cell segmentation from fluorescence and bright-field microscopy images" dataset contains the machine learning model files for CHO-K1 cell segmentation from fluorescence and bright-field microscopy images. Random forest-based models are implemented as Ilastik projects while deep-learning models are implemented in Keras.en
dc.formatilpen
dc.formathdf5en
dc.language.isoenen
dc.publisherUniversity of Tartu, Institute of Chemistry, Chair of Bioorganic chemistryen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectU-Neten
dc.subjectRandom foresten
dc.subjectCell segmentationen
dc.subjectIlastiken
dc.titleUT-GPCR002 Machine learning models for CHO-K1 cell segmentation from fluorescence and bright-field microscopy imagesen
dc.typeModelen
dc.relation.iscitedbyhttps://doi.org/10.1101/2021.12.22.473643en


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess